

Lecture 11: CW complex

Recall that $S^{n-1} \hookrightarrow D^n$ is a cofibration satisfying HEP, where, D^n is the n-disk and $S^{n-1} = \partial D^n$ is its boundary, the (n-1)-sphere. Let

$$e^n = (D^n)^\circ = D^n - \partial D^n$$

denotes the interior of D^n , the open disk known as the *n*-cell.

The category of CW-complex consists of topological spaces that can be built from n-cells and behaves nicely just like $S^{n-1} \hookrightarrow D^n$. It is also large enough to cover most interesting examples.

A cell decomposition of a space X is a family

$$\mathcal{E} = \{e_{\alpha}^n | \alpha \in J_n\}$$

of subspaces of X such that each e^n_α is a n-cell and we have a disjoint union of sets

$$X = \coprod e_{\alpha}^{n}$$
.

The n-skeleton of X is the subspace

$$X^n = \coprod_{\alpha \in J_m, m \le n} e_{\alpha}^m.$$

Example

Two cellular structures on S^n

$$S^n = e^0 \cup e^n$$

$$S^{n} = e_{+}^{n} \cup e_{-}^{n} \cup S^{n-1}$$

= $(e_{+}^{n} \cup e_{-}^{n}) \cup (e_{+}^{n-1} \cup e_{-}^{n-1}) \cup \cdots \cup (e_{+}^{0} \cup e_{-}^{0})$

A CW complex is a pair (X,\mathcal{E}) of a Hausdorff space X with a cell decomposition such that

1. Characteristic map: for each *n*-cell e^n_{α} , there is a map

$$\Phi_{e^n_\alpha}\colon D^n\to X$$

such that the restriction of $\Phi_{e^n_\alpha}$ to $(D^n)^\circ$ is a homeomorphism to e^n_α and $\Phi_{e^n_\alpha}(S^{n-1}) \subset X^{n-1}$.

- 2. C=Closure finiteness: for any cell $e \in \mathcal{E}$ the closure \bar{e} intersects only a finite number of cells in \mathcal{E} .
- 3. W=Weak topology: a subset $A \subset X$ is closed if and only if $A \cap \bar{e}$ is closed in \bar{e} for each $e \in \mathcal{E}$.

We say X is n-dim CW complex if the maximal dimension of cells in $\mathcal E$ is n (n could be ∞).

Note that the Hausdorff property of X implies that

$$\bar{\mathbf{e}} = \Phi_{\mathbf{e}}(D^n)$$
 for each cell $\mathbf{e} \in \mathcal{E}$.

The surjective map $\Phi_e:D^n\to \bar e$ is a quotient since D^n is compact and $\bar e$ is Hausdorff. Let us denote the full characteristic maps

$$\Phi:\coprod_{e\in\mathcal{E}}D^n\stackrel{\coprod\Phi_e}{\longrightarrow}X.$$

Then the weak topology implies that Φ is a quotient map.

Let (X,\mathcal{E}) be a CW complex. Then $f\colon X\to Y$ is continuous if and only if

$$f \circ \Phi_e : D^n \to Y$$

is continuous for each $e \in \mathcal{E}$.

Let (X, \mathcal{E}) be a CW complex. Then any compact subspace of Xmeets only finitely many cells.

Proof.

Assume K is a compact subspace of X which meets infinitely many cells. Let $x_i \in K \cap e_i$, $i = 1, 2, \dots$, where e_i 's are different cells. Let

$$Z_m = \{x_m, x_{m+1}, \cdots\}, \quad m \ge 1.$$

By the closure finiteness, Z_m intersects each closure \bar{e} by finite points, hence closed in \bar{e} by the Hausdorff property. By the weak topology, Z_m is a closed subset of X, hence closed in K. Observe

$$\bigcap_{m\geq 1} Z_m = \emptyset$$

but any finite intersection of Z_m 's is non-empty. This contradicts the compactness of K.

Let (X, \mathcal{E}) be a CW complex and X^n be the *n*-skeleton. Then X is the colimit (i.e. direct limit) of the telescope diagram

$$X^1 \to X^2 \to \cdots \to X^n \to \cdots$$

Proof.

This is because $f: X \to Y$ is continuous if and only if $f: X^n \to Y$ is continuous for each n.

Let (X, \mathcal{E}) be a CW complex. Then X is compactly generated weak Hausdorff.

Proof.

X is Hausdorff, hence also weak Hausdorff.

We check X is compactly generated. Assume $Z \subset X$ is k-closed. Since the closure of each cell \bar{e} is compact Hausdorff, $Z \cap \bar{e}$ is closed in \bar{e} . The weak topology implies that Z is closed in X.

A ALISAN

Exampl

Gride/cube decomposition of \mathbb{R}^n into *n*-cube $I^n \simeq D^n$.

Example

$$\mathbb{CP}^n \colon (\mathbb{C}^{n+1} - \{0\})/\sim$$
 and we have

$$\mathbb{CP}^0 \subset \mathbb{CP}^1 \subset \cdots \mathbb{CP}^{n-1} \subset \mathbb{CP}^n \subset \cdots \subset \mathbb{CP}^{\infty}.$$

Moreover,

$$\mathbb{CP}^{n} - \mathbb{CP}^{n-1} = \{ [z_0, \dots, z_n] \mid z_n \neq 0 \}$$

$$\simeq \mathbb{C}^{n} \simeq e^{2n}.$$

Thus \mathbb{CP}^n has one cell in every even dimension from 0 to 2n with characteristic map

$$\Phi_{2n} \colon D^{2n} \longrightarrow \mathbb{CP}^{n}$$

$$(z_{0}, \dots, z_{n}) \mapsto \left[z_{0}, \dots, z_{n-1}, \sqrt{1 - \sum_{i=0}^{n-1} |z_{i}|^{2}}\right]$$

A subcomplex (X', \mathcal{E}') of the CW complex (X, \mathcal{E}) is a closed subspace $X' \subset X$ with a cell decomposition $\mathcal{E}' \subset \mathcal{E}$. We will just write $X' \subset X$ when the cell decomposition is clear. We will also write $X' = |\mathcal{E}'|$.

Equivalently, a subcomplex is given by a subset $\mathcal{E}'\subset\mathcal{E}$ such that

$$e_1 \in \mathcal{E}', e_2 \in \mathcal{E}, \bar{e}_1 \cap e_2 \neq \emptyset \Longrightarrow e_2 \in \mathcal{E}'.$$

Given $f: S^{n-1} \to X$. Consider the push-out

We say $D^n \coprod_f X$ is obtained by attaching an *n*-cell to X.

 Φ_f is called the characteristic map of the attached *n*-cell.

图: Attaching a cell

More generally, if we have a set of maps $f_{\alpha}:S^{n-1}\to X$, then the push-out

$$\coprod_{\alpha} S^{n-1} \xrightarrow{f} X \qquad f = \coprod_{\alpha} f_{\alpha}$$

$$\coprod_{\alpha} D^{n} \xrightarrow{\Phi_{f}} (\coprod_{\alpha} D^{n}) \coprod_{f} X$$

is called attaching n-cells to X.

Example

The n-sphere S^n can be obtained by attaching a n-cell to a point.

Let (X, \mathcal{E}) be a CW complex, and $\mathcal{E} = \coprod \mathcal{E}^n$ where \mathcal{E}^n is the set of n-cells. Then the diagram

is a push-out. In particular, X^n is obtained from X^{n-1} by attaching n-cells in X.

Proof.

This follows from the fact that X^{n-1} is a closed subspace of X^n and the weak topology.

The converse is also true. The next theorem can be viewed as an alternate definition of CW complex.

Theorem

Suppose we have a sequence of spaces

$$\emptyset = X^{-1} \subset X^0 \subset X^1 \subset \cdots \subset X^n \subset X^{n+1} \subset \cdots$$

where X^n is obtained from X^{n-1} by attaching n-cells. Let

$$X = \bigcup_{n \geq 0} X^n$$

be the union with the weak topology: $A \subset X$ is closed if and only if $A \cap X^n$ is closed in X^n for each n. Then X is a CW complex.

The theorem follows directly from the next lemma.

Lemma

Let X be a (n-1)-dim CW complex and Y is obtained from X by attaching n-cells. Then Y is a n-dim CY complex.

Proof:

C: Closure finiteness follows from the fact that S^{n-1} is compact.

W: Weak topology follows from the push-out construction.

We need to check the Hausdorff property of Y.

H: The Hausdroff property of Y. Take $x, y \in Y$. If x lies in an n-cell, then it is easy to separate x from y. Otherwise, let $x, y \in X$ and take their open neighbourhoods U, V in X that separate them. Consder attaching the n-cells via the push-out:

Then $g_{\alpha}^{-1}(U), g_{\alpha}^{-1}(V)$ are open in S^{n-1} . Take their open neighbourhoods U_{α}, V_{α} in D^{n} , i.e.

$$U_{\alpha} \cap S^{n-1} = g_{\alpha}^{-1}(U), \qquad V_{\alpha} \cap S^{n-1} = g_{\alpha}^{-1}(V)$$

such that $U_{\alpha} \cap V_{\alpha} = \emptyset$. Then $U \cup (\bigcup_{\alpha} U_{\alpha})$ and $V \cup (\bigcup_{\alpha} V_{\alpha})$ are separated neighbourhood of x, y.

Let A be a subspace of X. A CW decomposition of (X,A) consists of a sequence

$$A = X^{-1} \subset X^0 \subset X^1 \subset \cdots \subset X$$

such that X^n is obtained from X^{n-1} by attaching n-cells and X carries the weak topology with respect to the subspaces X^n . The pair (X, A) is called a relative CW complex.

Note that for a relative CW complex (X, A), A itself may not be a CW complex.

Let (X, A) be a relative CW complex. Then $A \subset X$ is a cofibration.

Proof.

 $S^{n-1} \hookrightarrow D^n$ is a cofibration, and cofibration is preserved under push-out, so each

$$X^{n-1} \to X^n$$

is a cofibration. The proposition follows since composition of cofibrations is a cofibration.

Let $(X, \mathcal{E}), (Y, \tilde{\mathcal{E}})$ be two CW complexes. We can define a cellular structure on $X \times Y$ with n-skeleton

$$(X \times Y)^n = \{ e_{\alpha}^k \times \tilde{e}_{\beta}^l | 0 \le k + l \le n, \quad e_{\alpha}^k \in \mathcal{E}, \tilde{e}_{\beta}^l \in \tilde{\mathcal{E}} \}$$

and characteristic maps

$$\Phi_{\alpha,\beta}^{k,l} = (\Phi_{\alpha}^{l}, \Phi_{\beta}^{l}) : D_{\alpha,\beta}^{k+l} \to X \times Y.$$

Here we use the fact that $D_{\alpha,\beta}^{k+l} \equiv D_{\alpha}^{k} \times D_{\beta}^{l}$ topologically.

Example

Cellular decomposition for $\mathcal{S}^1 imes \mathcal{S}^1.$

 ${rac{8}{3}}$: Cellular decomposition for $S^1 imes S^1$

This natural cellular structure is closure finite. However, the product topology on $X \times Y$ may not be the same as the weak topology, so the topological product may not be a CW complex.

Observe that X, Y are compactly generated weak Hausdorff, and we can take their categorical product in the category $\underline{\mathscr{D}}$. Then this compactly generated product will have the weak topology, and becomes a CW complex.

Assume X is compactly generated and Y is locally compact Hausdorff, then the categorical product of X and Y in $\underline{\mathscr{T}}$ is the same as the categorical product in $\underline{\mathbf{Top}}$ (i.e. the topological product).

As a consequence, we have

Theorem

Let X.Y be CW complexes and Y be locally compact. Then the topological product $X \times Y$ is a CW complex.

Example

If X is a CW complex, then $X \times I$ is a CW complex.

A CW complex X is called locally finite if each point in X has an open neighborhood that intersects only finite many cells.

Locally finite CW complexes are locally compact Hausdorff.

Corollary

Let X.Y be CW complexes and Y be locally finite. Then the topological product $X \times Y$ is a CW complex.